Matbench (Offline Adapter)¶
This page documents the offline-first adapter and CLI for evaluating SRMF proxies on Matbench-style CSV data. The goal is to provide reproducible, conservative analyses without external dependencies or network calls.
Scope and assumptions
Input: a CSV with columns
band_gap,density,nsites,formation_energy_per_atom.Optional columns for reporting:
material_idandformula_pretty(you may supply alternative column names via CLI flags).Optional label column (e.g.,
label_candidate = 0/1): enables simple metrics with optional bootstrap confidence intervals.
CLI usage
Per-row SRMF evaluation and CSV export:
python tools/eval_matbench_srmf.py --path data.csv --id-col mid --formula-col formula --out reports/matbench_srmf.csv
With labels and metrics (plus bootstrap CIs):
python tools/eval_matbench_srmf.py --path data.csv --id-col mid --formula-col formula --label-col label_candidate --bootstrap 1000 --seed 0 --out reports/matbench_srmf.csv --metrics-out reports/matbench_srmf_metrics.json
Outputs
CSV:
material_id, formula, srmf_phase, curvature_kappa, stability_leak, prediction.Optional JSON metrics:
precision, recall, accuracyand bootstrap intervals when labels are present.
Claims & limitations
The adapter maps material summaries to SRMF proxy coordinates for exploration and monitoring.
Results are dataset-dependent; we report uncertainty where relevant and avoid comparative claims.
Live loaders (e.g., matminer/matbench) are intentionally out-of-scope here and may be added later behind optional dependencies and explicit flags.