# Matbench (Offline Adapter) This page documents the offline-first adapter and CLI for evaluating SRMF proxies on Matbench-style CSV data. The goal is to provide reproducible, conservative analyses without external dependencies or network calls. Scope and assumptions - Input: a CSV with columns `band_gap`, `density`, `nsites`, `formation_energy_per_atom`. - Optional columns for reporting: `material_id` and `formula_pretty` (you may supply alternative column names via CLI flags). - Optional label column (e.g., `label_candidate = 0/1`): enables simple metrics with optional bootstrap confidence intervals. CLI usage - Per-row SRMF evaluation and CSV export: - `python tools/eval_matbench_srmf.py --path data.csv --id-col mid --formula-col formula --out reports/matbench_srmf.csv` - With labels and metrics (plus bootstrap CIs): - `python tools/eval_matbench_srmf.py --path data.csv --id-col mid --formula-col formula --label-col label_candidate --bootstrap 1000 --seed 0 --out reports/matbench_srmf.csv --metrics-out reports/matbench_srmf_metrics.json` Outputs - CSV: `material_id, formula, srmf_phase, curvature_kappa, stability_leak, prediction`. - Optional JSON metrics: `precision, recall, accuracy` and bootstrap intervals when labels are present. Claims & limitations - The adapter maps material summaries to SRMF proxy coordinates for exploration and monitoring. - Results are dataset-dependent; we report uncertainty where relevant and avoid comparative claims. - Live loaders (e.g., matminer/matbench) are intentionally out-of-scope here and may be added later behind optional dependencies and explicit flags.